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\ ABSTRACT

ha important component) of a large 1scal. linear progr*~.ri i~g
/system is the reinversion~routine. This paper addresses an im-

portant ancillary technique~ for iapleasnt1ng~) a reinversion routine

utilizing the weU—known~~? and pivot agenda algorithms of Hellerman

and Rarick. Production of factors during reinversion typically

involves a left—to—right pivoting process. Unfortunately, during

the left—to— right process , a proposed pivot element of a spike column

may be zero , in which case columns are interchanged in an attempt to

obtain a pivotable column. In this paper we prove that the only columns

which need be considered for the interchange with a nonpivotable spike

are other spikes lying to the right within the same external bump.
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I. INTRODUCTION

Production linear progr~~ vdng codes maintain the inverse of

the basis in a factored form as the product of elementary column

matrices (i.e. matrices which differ from an identity in one coli~~~)

or elementary row matrices (i.e. matrices which differ from an identity

in one row) or some combination of the two. The vector (either the

column or the row) which distinguishes these matrices from an identity

matrix are known as e.tø. vec,tO’~4 and the sequence of these vectors is

known as the ETA file. Each basis change results in appending at

least one eta vector to the ETA file. Since both the time per pivot

and numerical error increase as the length of the ETA file increases,

it becomes necessary to periodically obtain a new factorization of

the basis inverse. For an m column basis, this is accomplished in

in steps by beginning with an identity and successively pivoting into

the identity, columns of the basis. At the termination of the process

the ETA file will represent the inverse of the current basis. If in

this process a proposed pivot element is zero, then columns of the

basis must be interchanged until a nonzero pivot element can be found.

Although reinversion techniques have been discussed in the literature

(e.g. (3, 4, 5J) a strategy for swapping columns has never been explicit—

ly detailed. The objective of this paper is to present new results

which address the problem of column swapping. We prove that the choices

for the column interchanges can be limited to a few special col~~~s.
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II. PRODUCT FORM OF THE INVERSE

Let B be any a x in nonaingular matrix. One of the moat conanon

factorisation. f or B~~ is the product form which corresponds to the

method for solving a system of linear equations known as Gauss—Jordan

reduction (see Section 5.2 of (1]). This procedure is used to represent

as the product of matrices each of the form

— 1 —
I I

I I

-

I Z~ (1)

i

- 
I 

~L I 5 1 1

A few observations concerning Z are obvious.

Proposition 1.

Z is nonsingular if and only if Z
j  ~ 0.

Proposition 2.

Let 8 be any rn—component vector having 0. Then Z8 —

Proposition 3.

Let 8 be any rn—component vector having 8~ # 0 , and let e~ denote

the vector having ~th component 1 and all other components zero.

if k 
~L t z  — c ~ 1 Then Z 8 ” e ~.

~~,• 

l/B
~
, if k — J J
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We now give the product form algorithm for B • For this presen-

tation we adopt the notation that A(i) denotes the ith column of the

matrix A.

ALG 1: PROVUCT FORM FACTORTZATTON

0. 1niJ ~Aa1A2at4Dn

Interchange columas of B, if necessary , so that the firs-t component

of 3(1) is nonzero. Set i ‘- 1, 8~ - 3(1) , and go to 3.

1. Updu ~tc CoL~ni

Set B~ - ~~~ ..•

2. Saup CoLwmu 16 P~cvo~ Etemtn.t Equa& Ze/w

If # 0, go to 3; otherwise, there is some co1i~~ 3(j) with

J > i such that the ~th component of E~~
1 ... E13(j ) is nonzero.

Interchange 3(j) and B(i) and return to 1.

3. Ob~to.~n New CoLumn Etc.

Set E~ (k) ~ e
k, for all k # i, and

~ [ 
1/8k, for k — i

otherwise.

4. Te~L ~o’c. TvunLna.tA~on

If i — m, terminate; otherwise, i ~~- i + 1 and go to 1.

At the termination of ALG 1, B_ i — Em E1, and each factor E’, ... , Em
take the form of Z in (1).

In the following two propositions we show that if in step 2 ,

8~. 
— 0, then the proposed interchange iø always possible. Consider the

following:
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Proposition 4.

For i < j ,  E~ E~
1’B(i) — e~.

Proof. By the construction of E~ and Proposition 3, 
•~~ .E

1
1(i) —

e~. By Proposition 2, E~ E~
’
~
’1e1’ — e~. So E1 E1B(i) — e~.

Using Proposition 4 we may now show the following:

Proposition 5.

For 2 < i < a, let B • E~
’1 

• E1’B(i) . If — 0, there is some

j > i such that • • •  E13 (j)] 
~ ~ 

0

Proof. Suppose (E~
’1’ • • •  E~B(i)]~ — 0 for all j > i. By the

construction of El, ... ~~~~ in ALG 1, and Proposition 1, each

factor is nonsingular. Since B is nonsingv.lar, 3i~~ •.. £13 is

nonsingular. By Proposition 4, E l ’  ... E13(j ) — for 1 < j < i — 1.
Hence, tI’e it” row of E

i_1 
•.. £13 is all zero, a contradiction.

III. BUMP AND SPIKE STRUCTURE

In order to minimize the core storage required to represent the ,

ETA file, i.e. E1, ..., Em, the rows and colt s of B are interchanged

in an attempt to place B in lower triangular form. If this can be accom—

plished, then the m nonidentity columns of E~ , ... , Em, have the same

• sparsity structure as B. Consider the following proposition:

Proposition 6.

If the first j—l components of 3(j) are zero for ~ 
> 2, then

E13(j) — 8(j).

Proof. This follows directly from successive application of Proposition 2.

Therefore, if B is lower triangular, the factored representation of

may be stored in approximately the same amount of core storage as B

itself. In practice it is unnecessary to calculate the elements 1/Bk

and 8i’8k in Step 3 of ALG 1. It sufficies to store k and the elements
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of 8~• It may prove advantageous to store l/t
~k~ 

in addition.

If Proposition 6 applies for B(k), then 8 — B(k) and the only additional

storag. required is for the index k (and possibly 118k~
• Clearly,

this results in substantial core storage savings compared to storing

3~1 explicitly.

If B cannot be placed in lower triangular form, then it is placed

in the form:

B~

B
2

where 31 and B3 are lower triangular matrices with nonzeroes on their

diagonals. We assume that if B2 is nonvacuous, every row and column

has at least two nonzero entries , so that no rearrangement of B2 can

expand the size of El or B3. 3
2 is called the bump 4e.c.t.~on, the me4~.t

4ecaon or the heaii.t 4tC.t.40n. We further require the heart section to

assume the following form:
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where Gk l s are either vacuous or lower triangular with nonzeroes on

the diagonal. The only partitions in B having columns with nonzeroes

above the diagonal are the which are called ezteknaL bwnp 6 . The

col
~~~

s extending above the diagonal are called 4pA.ke4 or 4pA.ke cOLumn6.

An external bump is characterized as follows:

(i) the last column of an external bump will

- 
- be a spike with a nonzero lying in the

topmost row of the external bump , and

(ii) the nonspik. columns have nonzero diagonal

elements.

The algorithms of Hellerman and Rarick (3, 4] produce such a structure

for any nonsingular matrix B, and we shall call a matrix having this

structure an HR matrix. It should be noted that if one applies ALG 1

to an HR matrix, then the only columns which may require an interchange

are spike columns. We now p.koue ~tha.t ~the onLy ~o&invio whWa need be

C0n4.üief ttd ~o’~ ~thA.~o £n.te ’wizange a.&e o.then~ 4p ~ke.4 Lit the same eicte ’utaL

Consider the following result :

Proposition 7. -

Let 3(i) with i > 2 correspond to the first column of some external

bump, ~k, and let B(j ) be a spike in Then E~~
1 ... E13(j) — 3(j).

Proof. Note that the first i — 1 components of 3(j) are zero.

Therefore, by successive application of Proposition 2 , the result

is proved.

Note that Proposition 6 allows one to eliminate all of the calculation

required in Step 1 of ALG 1 for non—spike columns and Proposition 7

allows one to elimin*te some of this calculation for spikes. We

now address the issue of spike swapping. Consider the following

propositions:
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Proposition 8.

Any spike B(j) which is not pivotable cannot be interchanged

with a spike 8(k) , k > j ,  from another external bump, to yield a

• pivotable column .

Proof. Since B(k) is from an external bump lying to the right of ~- 

-

the external bump containing B(j) ,  B~ (k) — 0. By repeated application

of Proposition 2 , ~~~~ •.. E13(k) — 8(k) . Thus 3(j) cannot be inter—

changed with is(k) to yield a pivotable column.

Proposition 9.

Any spike B(j) which is not pivotable cannot be interchanged

with a non—spike column 8(k) , k > j, to yield a pivotable column.

Proof. Let 3(k) , with k > j  correspond to any non—spike column.

From Proposition 6 , ~~~~ ... E~
1’B(k) — B(k) . Since the 3

th com-

ponent of B (k) is zero , B (j) cannot be interchanged with B (k), to

yield a pivotable column.

Proposition 10.

Any spike column B(j ) ,  which is not pivotable can be interchanged

with a spike, B(k), with k > j  within the same external bump, to

yield a pivotable column.

Proof. If 3(j) is not pivotable, then by Proposition 5 there exists

a co1~mn 1(k) ‘with k > j  which is pivotable. By Proposition 8,

3(k) cannot be a spike from a different external bump. By Propo-

sition 9, 3(k) cannot be a non—spike. Hence 3(k) must be a spike

from the same external bump.

We now revise ALG 1 incorporating the results of Propositions

6,
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ALG 2: PRODUCT FORM FACTORZZATION

FOR A HR MATRZX

0. Ibtc t.OJ.4.zat on

(same as ALG 1)

1. Upda.te SpLke

Let 3(k) correspond to the first column of the external bump

containing 3(i). Set B + ~~~ EkB(i).

2. &up Sp4~ke~s I~ PLvot EZ.emeivt Equats Zen.o

If ~ 0, go to 3; otherwise, there is some spike 3(j) in the

same external bump having j > i such that the i~~ component of

EkB(j) is nonzero. Interchange 3(j) and 3(i) and return

to l.

3. Obta2n New CoLumn Eta

(same as ALG 1)

4. Te4t ~o’r. Te/t&ncZLon

If i — m, terminate; otherwise, i ~ i + 1.

5. Te4t ~~ SpA.ke

If 3(i) is a spike, go to 1; otherwise, set 8 ~~- B(i) and go to 3.

The results of this section also hold if one uses the elimination

form of the inverse , which corresponds to the Gauss reduction. The

differenc, between the product and the elimination form factorizat ions

is that for the latter one develops 2m — 1 triangular factors such that

— ~~~~ El. A factor of the form shown in (1) is called LPt2dnguLa/L

if either z1 
— ... — z1_1 — 0 or z1+, ... — — 0. The details of

the elimination form algorithm are given in (2].
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